quarta-feira, 18 de setembro de 2019

Um sistema adiabático (em gregoἀδιάβατοςtransl.: adiabatos , "impenetrável")[1] é, na física, um sistema que está isolado de quaisquer trocas de calor.
É uma qualidade relativa à fronteira que delimita e determina o que vem a ser um sistema físico e por conseguinte o que se chama de sua vizinhança. Uma fronteira adiabática isola completamente o sistema de sua vizinhança no que tange a troca de matéria ou ao calor.
Na termodinâmica, associa-se também a processos ou transformações[2] que ocorrem no interior de fronteiras adiabáticas, havendo ausência de troca de energia na forma de calor com a vizinhança. Geralmente é aceito, entretanto, que uma fronteira adiabática não é completamente restritiva em relação à troca de energia, havendo a "flexibilidade" de que o volume encerrado pela fronteira se altere em processos ditos adiabáticos, o que por conseguinte pode levar à troca de energia entre o sistema e sua vizinhança na forma de trabalho.
Observa-se experimentalmente que processos que ocorram muito rapidamente em sistemas fechados podem ser tratados como processos adiabáticos, mesmo que as fronteiras que definam os respectivos sistemas não o sejam. Isto ocorre porque não há tempo para trocas de calor significativas entre o meio e sua vizinhança.[3] Como exemplos têm-se a compressão súbita do ar em uma seringa e um fenômeno climático que ocorre na atmosfera terrestre no qual uma parcela de ar aquecido, forçada a subir por convecção, se expande devido à diminuição da pressão atmosférica com a altitude, e se esfria devido a esta expansão (resfriamento adiabático e Vento Foehn). Inversamente, processos muito lentos, em que a temperatura do sistema permanece constante pela troca de calor com o ambiente, podem ser tratados como processos isotérmicos.
Um processo adiabático pode ser descrito pela expressão  onde  é a energia transferida pelo aquecimento (ou resfriamento). Pela segunda lei da termodinâmica para um processo reversível (onde T é a temperatura e S é a entropia), um processo adiabático reversível é também um processo isentrópico (). Entretanto, para um processo irreversível de modo que um processo adiabático irreversível não é isentrópico.
Um extremo oposto — permite transferência de calor com ambiente, fazendo com que a temperatura permaneça constante — é conhecido como um processo isotérmico. Como a temperatura é termodinamicamente conjugada à entropia, o processo isotérmico é conjugado ao processo isentrópico, e portanto a um processo adiabático reversível.
Uma curva adiabática é a representação, em um gráfico adequadamente dimensionado, da relação existente entre os valores de grandezas como pressão, volume e temperatura assumidos para o sistema que, sofrendo transformações, vai de um estado inicial P1, V1 e T1 para um estado final P2, V2 e T2, mantidas as condições de que não haja troca de calor ou matéria com o meio circunvizinho na passagem de um estado ao outro.

    Gás ideal (processo reversível)[editar | editar código-fonte]

    Para uma substância simples, durante um processo adiabático no qual o volume aumenta, a energia interna da substância que realiza trabalho deve diminuir.
    A equação matemática para um gás ideal passando por um processo adiabático reversível é
    onde P é a pressão, V é o volume, e

    x



    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
     sendo o calor específico para pressão constante,  sendo o calor específico para volume constante,  é o coeficiente de expansão adiabática, e  é o número de graus de liberdade (3 para um gás monoatômico, 5 para um gás diatômico e moléculas colineares).
    Para um gás ideal monoatômico, , e para um gás diatômico (como nitrogênio e oxigênio, principais componentes do ar.[4] Note que a fórmula acima se aplica somente a gases ideais clássicos e não Bose–Einstein ou Fermi gases.
    Para processos adiabáticos reversíveis, também é correto afirmar que
    onde T é uma temperatura absoluta.
    Isto também pode ser escrito como
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Exemplo de compressão adiabática[editar | editar código-fonte]

    Vejamos agora um exemplo comum de compressão adiabática, - a compressão em um cilindro de um motor de combustão interna. Faremos algumas suposições simples: que o volume descompactado do cilindro é 1000 cm³ (um litro), que o gás em seu interior é quase que puramente nitrogênio (portanto um gás diatômico com cinco graus de liberdade e assim  = 7/5), e a taxa de compressão do motor é 10:1 (isto é, o volume de 1000 cm³ de gás descompactado irá comprimir-se até 100 cm³ quando o pistão for de baixo para cima). O gás descompactado está aproximadamente a temperatura e pressão ambientes (temperatura de 27 °C, e pressão de 1 atm ~ 100000 Pa).
    então nossa constante adiabática para esse experimento é aproximadamente 1.58 bilhões.
    O gás é agora compactado até um volume de 100 cm³ (iremos supor que isso ocorre suficientemente rápido para que nenhum calor penetre ou deixe o gás). O novo volume é 100 cm³, mas a constante para esse experimento ainda é 1.58 bilhões:
    resolvendo para P:
    ou em torno de 24.5 atm. Note que esse aumento da pressão é mais do que uma simples taxa de compressão de 10:1 indicaria; isso porque o gás não é somente compactado, mas o trabalho exercido para comprimir o gás também o aquece, e quanto mais quente o gás maior a pressão, mesmo que o volume não tenha mudado.
    Podemos resolver para a temperatura do gás compactado no cilindro do motor também, usando a lei dos gases ideais. Nossas condições iniciais são 100000 Pa para pressão, 1000 cm³ de volume, e 300 K para temperatura, então nossa constante experimental é:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Sabemos que o gás compactado possui um V = 100 cm³ e P = 2.5E6 pa, então podemos resolver para a temperatura por simples álgebra:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Essa é uma temperatura final de 751 K, ou 477 °C, bem acima do ponto de ignição de muitos combustíveis. É por isso que um motor de alta compressão requer combustíveis especialmente formulados para não entrarem em autoignição (o que causaria o bater das bielas do motor quando operado sob estas condições de temperatura e pressão), ou que um supercompressor e intercooler que forneçam uma temperatura menor mantendo a mesma pressão. Um motor a diesel opera sob condições ainda mais extremas, com taxas de compressão de 20:1 ou mais, para fornecer uma alta temperatura de gás, que garanta a ignição imediata do combustível injetado.


    Em química, especialmente na termodinâmica, um sistema fechado, em contraste com um sistema isolado, é um sistema encerrado por uma fronteira que permite trocas de energia, mas não de matéria, entre o sistema e sua vizinhança. É o caso da Terra, considerada na prática quando o assunto é, entre outros, Geologia, um sistema fechado. Os sistemas isolados não permitem qualquer tipo de troca, seja ela de energia ou matéria, com a sua vizinhança, sendo encerrados por uma fronteira completamente restritiva em relação à energia, volume, e qualquer matéria. Um exemplo real deste último, e em verdade apenas o único conhecido, é o Universo como um todo. Fica entretanto a ressalva, neste exemplo, do que viria a ser a "vizinhança" do universo.
    Para um sistema fechado qualquer:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde U representa a energia interna do sistema, Q o calor trocado com a vizinhança (negativo quando sai do sistema), e  o trabalho realizado pelo sistema (positivo quando o volume do sistema aumenta, e por conseguinte este realiza trabalho sobre a vizinhança).
    Em física o conceito de sistema fechado por vezes se confunde com o conceito de sistema isolado, não havendo troca de energia tão pouco de matéria com a vizinhança nestes casos, e o leitor deve ficar atento à definição adotada pelo autor em questão.[1]
    Exemplos: lata em conserva, ovotermômetro clínico, etc.
    Segue-se um resumo descritivo dos diversos sistemas físicos.


    Taxa de fluxo de calor é o quociente da quantidade de calor que atravessa uma superfície durante um intervalo de tempo (fluxo de calor) pela duração desse intervalo. A densidade de taxa de fluxo de calor é o quociente do fluxo de calor que atravessa uma superfície pela área dessa superfície. O calor é energia em fluxo, existindo três mecanismos para ocorrer essa transferência de calor: a condução, a convecção e a radiação.[1] Na condução, a taxa de fluxo de calor é explicada por vibrações de átomos e elétrons que se propagam ao longo de uma rede. O calor flui da maior temperatura para a menor temperatura, denotadas  e , onde os índices q e f significam: "fonte quente" e "fonte fria", respectivamente.[2] Na convecção, uma parte de um fluido é aquecida por uma fonte quente e se dilata, consequentemente diminui sua densidade, fazendo com que essa parte aquecida vá para cima por causa da força do empuxo e subsequentemente a parte mais fria preenche a posição onde estava a parte mais quente; o processo pode se repetir inúmeras vezes; esse processo dá origem às correntes de convecção.[2] Na radiação, o calor se dá através de radiação térmica, que são ondas eletromagnéticas, com o sistema em observação; a radiação não necessita de matéria para se propagar, pode se propagar no vácuo.

      Condução Através de Placa Simples[editar | editar código-fonte]

      A taxa de fluxo ou taxa de transferência tem uma relação direta com a diferença de temperatura ; e tem uma relação inversamente proporcional com a espessura de isolante  entre os pontos de ; e tem também uma relação proporcional com a área  em que flui o calor. A taxa de fluxo de calor por condução  entre dois sistemas é medida em Watt (joules por segundo).
      taxa de fluxo de calor pode ser definido por:
      Condução de calor por placa isolante simples.
      [2]
      • Q/∆t é a taxa de fluxo de calor;
      • K é a condutividade térmica (depende do material);
      • A é a área de superfície;
      • T é a variação na temperatura;
      • L é a espessura de material isolante.

      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      [2]Tabela com condutividades térmicas de alguns materiais
      MaterialK (W/m.k)
      Espuma de Poliuretano0,024
      Ar (seco)0,026
      Lã de Pedra0,043
      Fibra de Vidro0,048
      Hélio0,15
      Aço Inoxidável14
      Chumbo35
      Ferro67
      Latão109
      Alumínio235
      Cobre401
      Prata428
      O conceito de Resistência Térmica foi introduzido na atuação da engenharia. O valor de Resistência Térmica  é definido:
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      A unidade de Resistência Térmica no SI é m².K/W.
      Observação 1: ∆T/L é chamado gradiente de temperatura;
      Observação 2: A taxa de fluxo de calor é comumente representado pela letra grega Fi (Φ);
      Observação 3: A equação dada acima também é conhecida como Lei de Fourier.

      Condução Através de uma Placa Composta[editar | editar código-fonte]

      Para uma placa composta de dois materiais de espessuras diferentes e condutividades térmicas diferentes, assumimos que a transferência de calor acontece em um regime estacionário, ou seja, a temperatura da barra é independente do tempo e depende apenas de L; isto, na prática, significa que as taxas de condução através dos materiais são iguais.[2] Chamamos Tx a temperatura entre os dois materiais fazemos a seguinte analogia:
      Condução de calor por placa composta de dois materiais.
      [2]
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Isolando Tx, obtemos:
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Substituindo Tx na expressão:
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Para o caso de uma placa composta por mais de dois materiais, a fórmula é generalizada:
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D